ORIGINAL PAPER

Acaricidal Efficacy of Thirty-Five Egyptian Plants Against the Camel Tick, Hyalomma Dromedarii

Hanem F. Khater¹ · Eman K. A. Bazh² · Samah Abdel Gawad¹ · Abdelfattah Selim³ · Hanan A. A. Taie⁴ · Ibrahim T. Radwan⁵ · Shawky A. Moustafa⁶ · Ameer A. Megahed^{7,8} · Mohamed M. Baz⁹ · Sahar A. Kandeel³

Received: 14 November 2022 / Accepted: 3 January 2024 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract

Purpose Alternative and affordable tick control strategies are crucial to control and prevent tick bites and tick-borne diseases. **Methods** In this study, we evaluated the acaricidal efficacy of 35 aqueous plant extracts (17%) against the camel tick, *Hyalomma dromedarii*.

Results The phytochemical profile indicated the presence of various secondary substances. Plants were classified into three groups according to their mortality percentage 15 days post-treatment with 17%. This highly effective group (91%–95%) comprised *Ocimum basilicum*, *Mespilus germanica*, and *Viola alpine* followed by *Carum carvi*, *Cucurbita pepo* (peel), and *Peganum harmala*. A moderately effective group (80%–90%) included *Acacia nilotica*, *Apium graveolens*, *Capsicum annuum*, *Ceratonia siliqua*, *Cucurbita pepo* (seeds), *Equisetum arvense*, *Eruca sativa*, *Ginkgo biloba*, *Plantago psyllium*, *Phyllanthus emblica*, *Punica granatum*, and *Ziziphus spinachristi*. The 20 remaining plants were assigned to the less effective group (<80%). *Viscum album* (58.3%), which was the least effective reference plant. The high potency of six plant extracts as acaricides may be attributed to the high content of active principles, e.g., phenols, flavonoids, and tannins.

Conclusion All of these highly effective plants are recommended for use as an acaricide, in case of facing acaricidal resistance or limited options for tick control.

Keywords Phyllanthus · Punica · Ziziphus · Ocimum · Mespilus · Viola

	1	Pa
Hanem F. Khater hanem.salem@fvtm.bu.edu.edu	2	B Pa
Sahar A. Kandeel saharkandeel@fvtm.bu.edu.eg	3	M D
Eman K. A. Bazh ebazh@yahoo.com		Fa Te
Samah Abdel Gawad dr.samah1@yahoo.com	4	Pl R St
Abdelfattah Selim abdelfattah.selim@fvtm.bu.edu.eg	5	S
Hanan A. A. Taie hanan_taie@yahoo.com	6	C
Ibrahim T. Radwan ibrahim80radwan@gmail.com	7	B
Shawky A. Moustafa shawky.mustafa@fvtm.bu.edu.eg		of G
Ameer A. Megahed ameermegahed@ufl.edu; ameermegahed@fvtm.bu.edu.eg	8	D of
Mohamed M. Baz mohamed.albaz@fsc.bu.edu.eg	9	D U

- ¹ Parasitology Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Qalyubiya, Egypt
- ² Parasitology Department, Faculty of Veterinary Medicine, Menofia University, Shebin Al-Kom 32511, Egypt
- ³ Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Qalyubiya, Egypt
- ⁴ Plant Biochemistry Department, Agricultural and Biology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt
- ⁵ Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
- ⁶ Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- ⁷ Department of Large Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, Gainesville, USA
- ⁸ Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- ⁹ Department of Entomology, Faculty of Science, Benha University, Toukh, Egypt

Introduction

Ticks are known vectors for severe infectious diseases [1–8] *Hyalomma dromedarii* (Ixodida: Ixodidae) is a blood-feeding ectoparasite that affects the health of camels [9] and cattle [10]. The application of synthesized pesticides contaminates the environment, milk, and meat products and leads to pesticide resistance [11–15].

Natural and medicinal plant extracts are widely used for their health benefits [16]. Eco-friendly acaricides [11, 17–19] are urgently required. Plant-based pesticides, also known as botanicals, possess parasiticidal [16, 20–24] and insecticidal effects [25, 26], such as ovicidal [27], adulticidal [27–29], larvicidal [28, 30–34], insect regulating effects [35], as well as deterrent and repellent features [29, 36] with different mode of actions and applications [36]. The bioactivity of plants depends on chemical compounds that inhibit the feeding of ticks. Toxic effects on pests are produced by terpenoids, steroids, phenols, flavonoids, tannins, alkaloids, and cyanogenic glycosides [33, 37, 38].

This work screened the novel acaricidal efficacy of 35 locally available and affordable plants against the camel tick, *H. dromedarii*, and compared their lethal times. Moreover, secondary metabolites of the most effective plants were determined.

Materials and Methods

Ticks

Adult males of *H. dromedarii* were collected from areas around camels at Toukh (35 km north of Cairo: 30° 21' 11.6"N, 31° 11' 31.5"E), Qalyubia Governorate, Egypt, and ticks were identified [39]. The experiment was conducted according to the guidelines of the Declaration of Benha University and approved by the Ethical Committee of the Faculty of Veterinary Medicine, Benha University (BUFVTM 02-10-22).

Plant Extraction Preparation

34 Plants and an herbal blend were purchased from an herbal market in the summer and identified at the Flora and Phytotaxonomy Section, Botany Department, Faculty of Science, Benha University, Egypt. Plants were dried in an oven at 30–35 °C with an air circulation for 2 days. After drying, each plant was minced before usage. The aqueous extract, 17% as a moderate concentration, of each plant (Table 1) was

prepared [15] with a slight modification. Fifty grams of each plant were added to warm distilled water (300 mL) in a glass jar and shaken in a dark condition for 24 h. The extracts were filtered using a Whatman filter paper (No. 1) and freshly used in evaluation in the adult immersion tests]

Adult Immersion Tests

Adult immersion tests, AIT (dipping), were used to evaluate the toxicity of each plant extract against *H. dromedarii* [15] with slight modification using a single concentration for each plant. For each test, ten adult males (per replicate) were immersed for 60 s in 100 mL of 17% of each plant extract diluted in distilled water. The control group was treated with distilled water only. Three replicates were used for each extract (30 ticks were tested for each plant). After immersing, the treated ticks were placed in a Petri dish with filter paper (Whatman N. 1). The tests were conducted at 27 °C±2 °C, 80%±5% relative humidity, and a photoperiod of 16:8 (light/dark). The mortality (MO) of ticks was monitored up to 15 days posttreatment (PT). The experiments were replicated three times to validate the results.

Chemical Analyses

Chemical analyses of the six most effective plants were performed.

Determination of Total Phenolic Content

The total phenolic content of the aqueous extracts of investigated plants was determined according to a previous study [40]. The absorbance was recorded at 725 nm against a reagent blank, and total phenolics were calculated from a calibration curve as gallic acid equivalents.

Determination of Total Flavonoid Content

Total flavonoids were estimated [41], and the absorbance was measured at 420 nm. Total flavonoid contents were calculated as the quercetin equivalent of a calibration curve.

Determination of Total Anthocyanin Content

Anthocyanins from the investigated plants were extracted overnight with ethanol and 1% HCl (85:15) at 4 °C. The optical density of the extracts was measured at 535 nm. The total anthocyanin concentrations were calculated [42] using the extinction coefficient as follows:

 $(E_{1 \text{ cm}}^{1\%} = 98.2 \text{ at } 535 \text{ nm})$

Table 1 Applied plants for screening tests

	Binomial name	Plant part	English name	Family name
1	Acacia nilotica	Seeds	Acacia	Fabaceae
2	Allium cepa	Dried cloves	Onion	Amaryllidaceae
3	Ambrosia maritima	Leaves	Ambrosia	Asteraceae
4	Angelica archangelica	Leaves	Garden Angelica	Apiaceae
5	Apium graveolens	Seeds	Celery	Apiaceae
6	Ballota saxatilis	Leaves	Samoa	Lamiaceae
7	Capsicum annuum	Fruit	Chili	Solanaceae
8	Carum carvi	Seeds	Caraway	Apiaceae
9	Ceratonia siliqua	Pods	Carob	Fabaceae
10	Corchorus olitorius	Leaves	Jews mallow	Malvaceae
11	Cucurbita pepo	Seeds	Pumpkin	Cucurbitaceae
12	Cucurbita pepo	Peal	Pumpkin	Cucurbitaceae
13	Equisetum arvense	Leaves	Equisetales	Equisetaceae
14	Eruca sativa	Seeds	Rocket	Brassicaceae
15	Ferula assafoetida		Asafoetida ferula	Apiaceae
16	Ginkgo biloba	Leaves	Ginkgo	Ginkgoaceae
17	Glycyrrhiza glabra	Leaves	Liquorice	Fabaceae
18	Hyphaene thebaica	Palm	Doum	Arecaceae
19	Lavandula angustifolia	Leaves	Lavender	Lamiaceae
20	Lupinus luteus	Seeds	Lupin	Fabaceae
21	Mespilus germanica	Leaves	Hawthorn	Rosaceae
22	Moringa oleifera	Leaves	Moringa	Moringaceae
23	Ocimum basilicum	Leaves	Basil	Lamiaceae
24	Peganum harmala	Seeds	esfand, or harmel	Nitrariaceae
25	Phyllanthus emblica	Stem	Phyllanthus	Phyllanthaceae
26	Plantago psyllium	Seeds	Psyllium	Plantaginaceae
27	Portulaca oleracea	Seeds	Portulaca or purslane	Portulacaceae
28	Punica granatum	Peal	Pomegranate	Lythracaea
29	Ruta graveolens	Leaves	Ruta (Common rue)	Rutacae
30	Solenostemma argel	Leaves	Argel	Apocynaceae
31	Terminalia chebula	Seeds	Terminalia	Combretaceae
32	Viola alpine	Flowers	Violet flower	Violaceae
33	Viscum album	Leaves	Mistletose	Santalaceae
34	Ziziphus spina- christi	Leaves	Christs thorn Jujube	Rhamnaceae
35	Herbal blend	Mainly Leaves (bazil, violt flowers, Sandalwood, saffron, clove puds, rosemary, chamomile, nutmeg seeds, Christs thorn Jujube, aleb)	Almashat	Several families

Determination of Total Tannin Content

Data Analysis

Tannin contents of aqueous extracts were determined using modified vanillin hydrochloric acid (MV-HCl) [43]. A total of 5 ml of vanillin–HCl reagent (50:50 mixtures of 4% vanillin and 8% HCl in methanol) was quickly added to 1 ml extract. Then, the color was measured at 500 nm using a spectrophotometer, and a standard curve was obtained, and concentrations of tannins were calculated. Data were analyzed through SPSS V23 (IBM, USA), and tick mortalities [43] were compared via one-way analysis of variance (one-way ANOVA, Duncan's MRT, P>0.05). Lethal time values were calculated through a Probit analysis and a *p* value of > 0.05 was deemed non-significant. Mortalities were corrected according to the following equation [44]: Corrected Mortality% = (MT%-MC%)/(100-MC%) * 100. Relative Toxicities was calculated [27] according to the following formula:

Results

$RT = LT_{50} (LC_{90}, LC_{95}, \text{ or } LT_{99})$ for *Viscum album*, the reference plant/LT₅₀ (LC₉₀, LC₉₅, or LT₉₉) for plant extract.

The correlation between mortality percentage and phenolic, flavonoids, tannin, and anthocyanins was evaluated using Pearson's correlation, and a correlation matrix was developed.

Acaricidal Efficacy

Based on the obtained results, plants were classified according to their mortality%, 15 days PT, into three groups. The highly effective group, H group (91–95%), included six plants arranged according to their toxicity as follows: *Ocimum basilicum*, *Mespilus germanica*, and

 Table 2
 Mortality percentage of the plant extracts against ticks treated with 17% concentration

Days post-treatments	1st	2nd	3rd	5th	7th	9th	12th	15th
Plants	Mortality $\% \pm$	SE						
Acacia nilotica	13.3 ± 0.33^{e}	27.6 ± 0.58^{de}	39.3 ± 0.33^{cd}	55.6 ± 0.58^{bc}	69.2 ± 0.33^{ab}	76.9 ± 0.0^{a}	80.0 ± 0.33^{a}	87.5 ± 0.0^{a}
Allium cepa	16.7 ± 0.33^{d}	24.1 ± 0.33^{d}	$46.4 \pm 0.58^{\circ}$	48.1 ± 0.33^{bc}	$57.7 \pm 0.67^{\rm abc}$	$61.5\pm0.33^{\rm abc}$	68.0 ± 0.33^{ab}	79.2 ± 0.33^{a}
Ambrosia maritima	$16.7 \pm 0.67^{\circ}$	34.5 ± 0.33^{b}	39.3 ± 0.33^{b}	59.3 ± 0.33^{a}	57.7 ± 0.33^{a}	69.2 ± 0.33^{a}	72.0 ± 0.33^{a}	75.0 ± 0.0^{a}
Angelica archangelica	$26.7 \pm 0.33^{\circ}$	$37.9 \pm 0.58^{\rm bc}$	50.0 ± 0.33^{b}	74.1 ± 0.33^{a}	73.1 ± 0.33^{a}	80.8 ± 0.33^{a}	80.0 ± 0.33^{a}	79.2 ± 0.33^{a}
Apium graveolens	$30.0 \pm 0.58^{\circ}$	$34.5 \pm 0.33^{\circ}$	50.0 ± 0.33^{bc}	63.0 ± 0.67^{ab}	73.1 ± 0.33^{ab}	$76.9 \pm 0.58^{\rm a}$	76.0 ± 0.58^{a}	87.5 ± 0.58^{a}
Ballota saxatilis	20.0 ± 0.58^{e}	20.7 ± 0.33^{de}	25.0 ± 0.58^{cde}	37.0 ± 0.67^{bcd}	38.5 ± 0.33^{abc}	46.2 ± 0.33^{ab}	56.0 ± 0.33^{ab}	58.3 ± 0.33^a
Capsicum annuum	30.0 ± 0.58	34.5 ± 0.33	46.4 ± 0.0	55.6 ± 0.58	61.5 ± 0.33	69.2 ± 0.33^{abc}	80.0 ± 0.33^{ab}	87.5 ± 0.58^{a}
Carum carvi	30.0 ± 0.58^{e}	37.9 ± 0.58^{e}	$42.9\pm0.33^{\rm de}$	59.3 ± 0.33^{cd}	$65.4 \pm 0.58^{\rm bc}$	73.1 ± 0.33^{abc}	84.0 ± 0.0^{ab}	91.7 ± 0.33
Ceratonia siliqua	16.7 ± 0.33^{d}	34.5 ± 0.67^{cd}	$39.3 \pm 0.67^{\circ}$	$55.6\pm0.58^{\rm b}$	61.5 ± 0.33^{b}	69.2 ± 0.33^{ab}	76.0 ± 0.0^{a}	83.3 ± 0.33^a
Corchorus olitorius	$10.0 \pm 00.0^{\rm e}$	20.7 ± 0.33^{de}	32.1 ± 0.88^{cd}	44.4 ± 0.58^{bc}	$42.3\pm0.58^{\rm bc}$	50.0 ± 0.33^{abc}	64.0 ± 0.58^{ab}	70.8 ± 0.33^a
Cucurbita pepo (seeds)	$16.7 \pm 0.33^{\circ}$	$34.5\pm0.67^{\rm b}$	$39.3 \pm 0.67^{\mathrm{b}}$	$66.7\pm0.0^{\rm a}$	76.9 ± 0.0^{a}	84.6 ± 0.33^{a}	84.0 ± 0.33^{a}	83.3 ± 0.33^a
Cucurbita pepo (Peals)	30.0 ± 0.58^{e}	$44.8\pm0.33^{\rm de}$	60.7 ± 0.33^{cd}	70.4 ± 0.33^{bc}	73.1 ± 0.33^{abc}	$76.9 \pm 0.0^{\rm abc}$	84.0 ± 0.33^{ab}	91.7 ± 0.33^a
Equisetum arvense	16.7 ± 0.33^{e}	41.4 ± 0.33^{d}	60.7 ± 0.33^{cd}	63.0 ± 0.88^{bc}	$76.9 \pm 0.58^{\rm abc}$	$84.6\pm0.33^{\rm abc}$	80.0 ± 0.33^{ab}	87.5 ± 0.0^{a}
Eruca sativa	26.7 ± 0.88^d	31.0 ± 0.88^{cd}	42.9 ± 0.33^{bcd}	55.6 ± 0.58^{abc}	69.2 ± 0.33^{ab}	69.2 ± 0.33^{ab}	72.0 ± 0.33^a	83.3 ± 0.33^a
Ferula assafoetida	30.0 ± 0.58^d	34.5 ± 0.67^{cd}	$42.9 \pm 0.33^{\rm bcd}$	48.1 ± 0.33^{bc}	57.7 ± 0.33^{ab}	61.5 ± 0.33^{ab}	72.0 ± 0.33^a	79.2 ± 0.33^a
Ginkgo biloba	$30.0 \pm 0.58^{\circ}$	57.1 ± 0.58^{b}	$58.6 \pm 0.58^{\rm b}$	69.2 ± 0.33^{ab}	70.4 ± 0.33^{ab}	76.9 ± 0.0^{ab}	79.2 ± 0.33^{a}	80.0 ± 0.33^a
Glycyrrhiza glabre	13.3 ± 0.33^{e}	20.7 ± 0.33^{de}	35.7 ± 0.58^{cd}	51.9 ± 0.33^{bc}	53.8 ± 0.58^{abc}	57.7 ± 0.33^{ab}	68.0 ± 0.33^{ab}	75.0 ± 0.58^a
Hyphaene thebaica	26.7 ± 0.33^{d}	41.4 ± 0.88^{cd}	50.0 ± 0.33^{bc}	59.3 ± 0.33^{abc}	$69.2 \pm 0.33^{\rm ab}$	$73.1\pm0.33^{\rm a}$	76.0 ± 0.0^{a}	79.2 ± 0.33^a
Lavandula angustifolia	20.0 ± 0.58^{e}	$37.9\pm0.00^{\rm d}$	46.4 ± 0.58^{cd}	55.6 ± 0.58^{bc}	65.4 ± 0.0^{ab}	$69.2 \pm 0.33^{\rm ab}$	76.0 ± 0.0^{a}	79.2 ± 0.33^a
Lupinus luteus	16.7 ± 0.33^{e}	$24.1\pm0.33^{\rm de}$	35.7 ± 0.0^{cd}	$44.4\pm0.0^{\rm c}$	46.2 ± 0.33^{bc}	$50.0 \pm 0.67^{\rm bc}$	64.0 ± 0.58^{ab}	79.2 ± 0.33^a
Mespilus germanica	36.7 ± 0.33^{d}	$37.9 \pm 0.58^{\rm d}$	$57.1 \pm 0.58^{\rm c}$	$59.3 \pm 0.33^{\circ}$	73.1 ± 0.33^{bc}	84.6 ± 0.33^{ab}	92.0 ± 0.33^{ab}	95.8 ± 0.33^a
Moringa oleifera	13.3 ± 0.33^{d}	24.1 ± 0.33^{cd}	$32.1 \pm 0.33^{\circ}$	63.0 ± 0.33^{b}	65.4 ± 0.0^{b}	73.1 ± 0.33^{ab}	76.0 ± 0.0^{ab}	83.3 ± 0.33^a
Ocimum basilicum	50.0 ± 0.58^{d}	51.7 ± 0.33^{d}	57.1 ± 0.0^{cd}	$70.4 \pm 0.33^{\circ}$	73.1 ± 0.33^{bc}	73.1 ± 0.33^{bc}	92.0 ± 0.33^{ab}	95.8 ± 0.33^a
Peganum harmala	30.0 ± 0.58^{d}	41.4 ± 0.33^{cd}	$42.9\pm0.67^{\rm cd}$	59.3 ± 0.33^{bc}	65.4 ± 0.58^{b}	$69.2 \pm 0.33^{\rm ab}$	80.0 ± 0.33^{ab}	91.7 ± 0.33^a
Phyllanthus emblica	33.3 ± 0.33^{e}	$44.8\pm0.33^{\rm de}$	53.6 ± 0.33^{cd}	59.3 ± 0.67^{bcd}	$73.1\pm0.33^{\rm abc}$	76.9 ± 0.58^{ab}	80.0 ± 0.67^{ab}	$87.5\pm0.0^{\rm a}$
Plantago psyllium	33.3 ± 0.67^{e}	$41.4\pm0.33^{\rm de}$	46.4 ± 0.58^{cde}	59.3 ± 0.33^{bcd}	61.5 ± 0.33^{bc}	76.9 ± 0.0^{ab}	80.0 ± 0.33^{ab}	87.5 ± 0.58^a
Portulaca oleracea	$20.0 \pm 0.58^{\circ}$	$20.7 \pm 0.33^{\circ}$	32.1 ± 0.88^{bc}	37.0 ± 0.88^{bc}	50.0 ± 0.67^{ab}	50.0 ± 0.67^{ab}	68.0 ± 0.33^{a}	75.0 ± 0.0^a
Punica granatum	23.3 ± 0.33^{e}	$37.9\pm0.00^{\rm de}$	39.3 ± 0.33^{cd}	40.7 ± 0.33^{cd}	50.0 ± 0.33^{bcd}	53.8 ± 0.58^{bc}	68.0 ± 0.33^{ab}	87.5 ± 0.58^a
Ruta graveolens	16.7 ± 0.33^{e}	31.0 ± 0.33^{de}	46.4 ± 0.58^{cd}	$48.1 \pm 0.33^{\circ}$	61.5 ± 0.67^{bc}	$69.2 \pm 0.33^{\rm ab}$	80.0 ± 0.33^{ab}	37.5 ± 0.0^{a}
Solenostemma argel	$20.0\pm0.0^{\rm c}$	$24.1 \pm 0.33^{\circ}$	$25.0\pm0.58^{\rm c}$	$29.6 \pm 0.33^{\circ}$	$53.8 \pm 0.58^{\rm b}$	73.1 ± 0.67^{ab}	80.0 ± 0.33^{a}	79.2 ± 0.33^a
Terminalia chebula	26.7 ± 0.33^{d}	34.5 ± 0.67^{cd}	$39.3 \pm 0.67^{\rm bcd}$	48.1 ± 0.88^{abcd}	$57.7 \pm 0.67^{\rm abc}$	61.5 ± 0.33^{ab}	64.0 ± 0.0^{ab}	70.8 ± 0.33^a
Viola alpine	13.33 ± 0.33^{e}	$17.2\pm0.00^{\rm e}$	28.6 ± 0.33^{de}	48.1 ± 0.88 ^{cd}	69.2 ± 0.33^{bc}	80.8 ± 0.33^{ab}	88.0 ± 0.58^{ab}	95.8 ± 0.33^a
Viscum album	23.3 ± 0.33^d	24.1 ± 0.33^d	28.6 ± 0.33^{cd}	40.7 ± 0.33^{bc}	38.5 ± 0.33^{bc}	38.5 ± 0.33^{bc}	44.0 ± 0.33^{ab}	58.3 ± 0.33^a
Ziziphus spina- christi	$20.0\pm0.58^{\rm e}$	$24.1\pm0.33^{\rm e}$	$46.4\pm0.0^{\rm d}$	51.9 ± 0.33^{cd}	57.7 ± 0.33^{bcd}	$65.4\pm0.0^{\rm bc}$	68.0 ± 0.33^{ab}	83.3 ± 0.33^a
Herbal blend	26.7 ± 0.33^{e}	$37.9\pm0.58^{\rm de}$	42.9 ± 0.33^{cd}	59.3 ± 0.33^{bc}	61.5 ± 0.33^{ab}	69.2 ± 0.33^{ab}	76.0 ± 0.0^{ab}	79.2 ± 0.33^a
Control	0.0 ± 0.0^{d}	3.3 ± 0.33^{cd}	6.7 ± 0.33^{bcd}	10.0 ± 0.00^{abcd}	13.3 ± 0.33^{abc}	13.3 ± 0.33^{abc}	16.7 ± 0.33^{ab}	20.0 ± 0.33^a

Numbers in the same column followed by the same small letter were not significant (one-way ANOVA, Duncan's MRT, P > 0.05)

Viola alpine, followed by *Carum carvi*, *Cucurbita pepo* (peel), and *Peganum harmala* (Table 2).

The moderately effective group (80–90%), M group, clustered 12 plant species, as follows: Acacia nilotica, Apium graveolens, Capsicum annuum, Ceratonia siliqua, Cucurbita pepo (seeds), Equisetum arvense, Eruca sativa, Ginkgo biloba, Plantago psyllium, Phyllanthus emblica, Punica granatum, and Ziziphus spina-christi. The other plants were allocated in the less effective group (L group) (<80%). Viscum album (58.3%) was the least effective and reference plant (Table 2).

The lowest LT₅₀ values were recorded for *Ocimum* basilicum and *Ginkgo biloba* (1.1 days), and they were able to kill ticks eight times faster compared to the reference plant. The LT₉₉ values of the H and M groups ranged from 19.428 (*Acacia nilotica*) to 25.920 days (*Punica granatum*), respectively, and killed ticks twice as fast as *Viscum album*, except for *Mespilus germanica* and *Viola alpine* (2.5 and 2.6 times, respectively) (Table 3).

Chemical Profile

The chemical profile of the highly effective group indicated contents of total phenolic, flavonoid, tannin, and anthocyanin compounds. Although all aqueous extracts possess active principles, *Viola alpine* extract contained the highest active compounds among the investigated plants as follows: 314.01 ± 1.73 , 167.57 ± 1.40 mg/g and 15.37 ± 0.16 mg/100g for contents of phenols, flavonoids, and anthocyanins, respectively, which resulted in efficiency in killing ticks that reached $95.8 \pm 0.33\%$ at the end of the experiment (Table 4).

Mespilus germanica and Ocimum basilicum extracts also exhibited high efficiency against ticks $(95.8\% \pm 0.33\%)$; they comprised a relatively high content of phenols, flavonoids, and tannins (135.53 ± 0.40) , 42.63 ± 0.38 , 4.24 ± 0.25 , and 42.43 ± 0.269 , 9.76 ± 0.140 , and 0.93 ± 0.040 , respectively). However, Carum carvi contained the highest total tannin content $(41.50 \pm 0.464 \text{ mg/g DW})$ and achieved $91.7\% \pm 0.33\%$ mortality (Table 4). Pearson's correlation matrix between the tick mortality rate and the concentrations of four phytochemicals (phenolics, flavonoids, tannins, and anthocyanins) was revealed (Fig. 1). The correlation matrix plot showed that there was a positive correlation between the tick mortality rate and the concentrations of phenolic, flavonoids, and anthocyanins in plant extracts, comprised that these compounds may have acaricidal properties. Additionally, the high correlation between phenolic, flavonoids, and anthocyanins suggested that these compounds may work synergistically to enhance their acaricidal activity.

Discussion

Eco-friendly pest control is important for preventing vector-borne diseases [25, 26, 45–47]. Thus, this study evaluated the novel use of 35 plants against *H. dromedarii*. An ALT bioassay was used for this study as it is the closest test to a spot-on (topical) application and requires a small amount of the applied extracts used by farmers. Our findings indicate that *C. carvi*, *C. pepo*, *M. germanica*, *O. basilicum*, *P. harmala*, and *V. alpine* induced the highest (91%–95%) mortality. *O. basilicum* and *G. biloba* (LT₅₀=1.1 days) killed ticks eightfolds swifter than *V. album*.

Because these applied plants were novel against *H. dromedarii*, their efficacies against other pests were also examined in the literature. Analogous to our results, it was previously determined that *Carum carvi* oil effectively killed *Sitophilus zeamais* and *Tribolium castaneum* adults (LD50 values = 3.07 and 3.29 mg/adult, respectively) and provoked strong fumigant toxicity (lethal Concentration 50, LC₅₀, values = 3.37 and 2.53 mg/L, respectively) [48]. *Carum carvi* was also effective against *Callosobruchus maculatus* (Coleoptera: Bruchidae) [49] (repellence = 66.29%) and the house dust mite *D. pteronyssinus* [50].

Like findings of this investigation, other studies indicated that some plants of the highly effective group induced pesticidal effects as follows: *Cucurbita maxima*, 2%, showed effects against *Cephalopina titillator* larvae at 24 h PT [28]; *Ocimum basilicum* induced pesticidal effect against *Rhipicephalus* (*Boophilus*) *microplus* [51, 52]; the toxicity indices three days PT with *Vitex castus* and *Zingiber officinale* extracts were 96.72 and 100.00% against *Hyalomma dromedarii* [53].

Ocimum basilicum and Lavandula officinalis Chaix showed effects against tetranychid mites, Tetranychus urticae (Koch), and Eutetranychus orientalis [54]; meanwhile, Peganum harmala was effective against Tribolium castaneum [55]. Comparatively, Viola alpine oil provided 8 h of protection against Aedes, Anopheles, and Culex mosquitoes [56]. The novel acaricidal effect of myrrh (Commiphora molmol) and ginger (Zingiber officinale) extracts (96.0 and 84.01% mortality, 15 days PT) and their silver nanoformulations through laser ablation (100% mortality, reached 7 and 9 days PT with 12%, respectively) led to increased speed and efficacy of the aqueous extracts against H. dromedarii [15]. Also, the extracts of Araucaria heterophylla and Commiphora molmol were very effective against camel and cattle ticks, and flies, which may be attributed to the high contents of active principles, e.g., phenols, flavonoids, and tannins. V. alpine extract included the uppermost active compounds among the investigated

5	
a	
7	
0	
2	
2	
9	
-	
3	
2	
2	
2	
2	
2	
2	
3	
ž	
÷.,	
1	
•	
S	
5	
ž	
E	
a	
0	
د	
Ξ	
0	
<u>×</u>	
0	
Ξ.	
ē	
÷	
+	
ï	
15	
. H	
5	
60	
ĩ	
S	
5	
2	
Ĩ	
Ч.	
o	
(1)	
5	
·=	
Ħ	
6	
6	
ŭ	
.=	
e)	
he	
the	
l the	
nd the	
und the	
and the	
) and the	
%) and the	
7%) and the	
[7%) and the	
17%) and the	
(17%) and the	
s (17%) and the	
tts (17%) and the	
icts (17%) and the	
racts (17%) and the	
tracts (17%) and the	
xtracts (17%) and the	
extracts (17%) and the	
t extracts (17%) and the	
nt extracts (17%) and the	
ant extracts (17%) and the	
lant extracts (17%) and the	
plant extracts (17%) and the	
s plant extracts (17%) and the	
is plant extracts (17%) and the	
us plant extracts (17%) and the	
ous plant extracts (17%) and the	
eous plant extracts (17%) and the	
ueous plant extracts (17%) and the	
queous plant extracts (17%) and the	
aqueous plant extracts (17%) and the	
f aqueous plant extracts (17%) and the	
of aqueous plant extracts (17%) and the	
of aqueous plant extracts (17%) and the	
s of aqueous plant extracts (17%) and the	
es of aqueous plant extracts (17%) and the	
ues of aqueous plant extracts (17%) and the	
lues of aqueous plant extracts (17%) and the	
alues of aqueous plant extracts (17%) and the	
values of aqueous plant extracts (17%) and the	
e values of aqueous plant extracts (17%) and the	
he values of aqueous plant extracts (17%) and the	
me values of aqueous plant extracts (17%) and the	
time values of aqueous plant extracts (17%) and the	
time values of aqueous plant extracts (17%) and the	
il time values of aqueous plant extracts (17%) and the	
aal time values of aqueous plant extracts (17%) and the	
thal time values of aqueous plant extracts (17%) and the	
ethal time values of aqueous plant extracts (17%) and the	
lethal time values of aqueous plant extracts (17%) and the	
e lethal time values of aqueous plant extracts (17%) and the	
ne lethal time values of aqueous plant extracts (17%) and the	
The lethal time values of aqueous plant extracts (17%) and the	
The lethal time values of aqueous plant extracts (17%) and the	
The lethal time values of aqueous plant extracts (17%) and the	
3 The lethal time values of aqueous plant extracts (17%) and the	
: 3 The lethal time values of aqueous plant extracts (17%) and the	
le 3 The lethal time values of aqueous plant extracts (17%) and the	
ble 3 The lethal time values of aqueous plant extracts (17%) and the	
ble 3 The lethal time values of aqueous plant extracts (17%) and the	
The lethal time values of aqueous plant extracts (17%) and the	
Table 3 The lethal time values of aqueous plant extracts (17%) and the	

	1									
Plants	LT_{50}	LT_{90}	LT_{95}	LT_{99}	Chi					
	Upper	Upper	Upper	Upper	df	Regression	Relative t	oxicity (RT)		
	Lower limits	Lower limits	Lower limits	Lower limits	sig	R^2	LT_{50}	LT_{90}	LT_{95}	LT_{99}
Acacia nilotica	4.837	12.875	15.153	19.428	2.598	y = 0.78 + 0.15 * x	1.9	2.1	2.1	2.1
	2.302	10.134	11.809	14.850	9					
	6.788	19.463	23.601	31.464	0.857^{a}					
Allium cepa	5.673	16.646	19.756	25.591	2.083	y = 0.69 + 0.12 * x	1.6	1.6	1.6	1.6
	2.257	12.430	14.532	18.377	9					
	8.397	30.507	37.557	50.878	0.912^{a}					
Ambrosia maritima	5.023	16.422	19.654	25.716	2.457	y = 0.58 + 0.11 * x	1.8	1.6	1.6	1.6
	0.949	12.153	14.318	18.270	9	0.818				
	7.724	31.213	38.882	53.379	0.873^{a}					
Angelica archangelica	2.739	14.125	17.353	23.408	3.960	y = 0.27 + 0.11 * x	3.4	1.9	1.8	1.8
	-3.725	10.361	12.547	16.475	9	0.722				
	5.399	27.546	35.631	50.970	0.682^{a}					
Apium graveolens	3.260	13.611	16.545	22.050	1.775	y = 0.38 + 0.12 * x	2.8	2.0	1.9	1.9
	-1.668	10.167	12.196	15.854	9	0.882				
	5.672	24.560	31.240	43.921	0.939^{a}					
Ballota saxatilis	8.725	22.630	26.572	33.966	0.514	y = 0.82 + 0.09 * x	1.1	1.2	1.2	1.2
	5.478	15.837	18.275	22.780	9	0.945				
	15.044	56.086	68.219	91.048	0.998^{a}					
Capsicum annuum	3.983	14.301	17.226	22.713	0.434	y = 0.49 + 0.12 * x	2.3	1.9	1.9	1.8
	-0.235	10.720	12.734	16.385	9	0.972				
	6.373	25.600	32.142	44.541	0.999^{a}					
Carum carvi	3.698	12.827	15.415	20.269	0.323	y = 0.51 + 0.14 * x	2.5	2.1	2.1	2.0
	0.013	9.784	11.624	14.945	9	0.982				
	5.849	21.344	26.666	36.781	0.999^{a}					
Ceratonia siliqua	4.851	14.618	17.387	22.580	1.655	y = 0.65 + 0.13 * x	1.9	1.8	1.8	1.8
	1.557	11.146	13.085	16.614	9	0.896				
	7.166	24.619	30.346	41.198	0.949^{a}					
Corchorus olitorius	7.480	18.310	21.379	27.138	1.854	y = 0.95 + 0.12 * x	1.2	1.5	1.5	1.5
	4.802	13.748	15.821	19.637	9	0.864				
	10.785	32.921	39.659	52.372	0.933^{a}					
Cucurbita pepo (seeds)	2.214	12.205	15.038	20.351	1.701	y = 0.26 + 0.12 * x	4.2	2.2	2.1	2.0
	-3.685	9.065	11.046	14.575	9	0.894				
	4.655	22.213	28.823	41.412	0.945^{a}					
Cucurbita pepo (peel)	3.866	12.273	14.657	19.128	4.720	y = 0.55 + 0.14 * x	2.4	2.2	2.2	2.2
	0.708	9.535	11.282	14.430	9	0.786				
	5.874	19.095	23.599	32.176	0.580^{a}					
Equisetum arvense	3.038	12.366	15.011	19.971	4.583	y = 0.4 + 0.13 * x	3.1	2.2	2.1	2.1

Table 3 (continued)										
Plants	LT_{50}	LT_{90}	LT_{95}	LT_{99}	Chi					
	Upper	Upper	Upper	Upper	df	Regression	Relative	toxicity (RT		
	Lower limits	Lower limits	Lower limits	Lower limits	sig	R^2	LT_{50}	LT_{90}	LT_{95}	LT_{99}
	-1.323	9.383	11.271	14.657	9	752.000				
	5.265	20.785	26.331	36.891	0.598^{a}					
Eruca sativa	4.329	15.102	18.156	23.885	1.381	y=0.51+0.12*x	2.1	1.8	1.8	1.7
	0.098	11.268	13.349	17.132	9	0.904				
	6.824	27.631	34.614	47.836	0.967^{a}					
Ferula assafoetida	4.735	17.274	20.829	27.496	0.317	y = 0.48 + 0.1 * x	2.0	1.6	1.5	1.5
	-0.373	12.450	14.752	18.953	9	0.97				
	7.682	37.155	46.845	65.136	0.999 ^a					
Ginkgo biloba	1.093	15.563	19.665	27.359	2.687	y = 0.08 + 0.08 * x	8.5	1.7	1.6	1.5
	-15.692	10.707	13.262	17.831	9	0.724				
	4.596	46.007	62.675	94.166	0.847^{a}					
Glycyrrhiza glabra	6.425	16.915	19.889	25.467	2.426	$y = 0.083 + 0.12^*x$	1.4	1.6	1.6	1.6
	3.542	12.790	14.826	18.558	9	0.849				
	9.200	29.586	35.952	47.978	0.877^{a}					
Hyphaene thebaica	3.352	15.573	19.038	25.536	1.745	y = 0.34 + 0.1 * x	2.8	1.7	1.7	1.6
	-3.205	11.270	13.548	17.670	9	0.848				
	6.135	32.776	42.154	59.896	0.942^{a}					
Lavandula angustifolia	4.294	15.568	18.764	24.759	2.009	y = 0.49 + 0.11 * x	2.2	1.7	1.7	1.7
	-0.312	11.514	13.665	17.575	9	0.848				
	6.893	29.594	37.231	51.681	0.919^{a}					
Lupinus luteus	6.763	17.870	21.018	26.925	0.956	$y = 0.8 + 0.12^*x$	1.4	1.5	1.5	1.5
	3.806	13.310	15.421	19.298	9	0.932				
	9.890	33.101	40.265	53.784	0.987^{a}					
Mespilus germanica	2.702	10.491	12.700	16.842	0.486	$y = 0.42 + 0.16^*x$	3.4	2.6	2.5	2.5
	-0.967	8.031	9.648	12.530	9	0.98				
	4.640	16.912	21.326	29.755	0.998^{a}					
Moringa oleifera	5.160	13.733	16.163	20.721	3.553	y = 0.79 + 0.15 * x	1.8	2.0	2.0	2.0
	2.525	10.745	12.508	15.716	9	0.838				
	7.238	21.215	25.744	34.338	0.737^{a}					
Ocimum basilicum	1.104	11.347	14.251	19.698	0.508	y = 0.16 + 0.13 * x	8.4	2.4	2.2	2.1
	-7.174	8.244	10.257	13.792	9	0.966				
	3.778	22.465	30.120	44.721	0.998^{a}					
Peganum harmala	3.678	13.656	16.484	21.790	0.500	y = 0.48 + 0.13 * x	2.5	2.0	1.9	1.9
	-0.584	10.268	12.232	15.782	9	0.97				
	5.999	24.086	30.325	42.164	0.998^{a}					

Table 3 (continued)										
Plants	LT_{S0}	LT_{90}	LT_{95}	LT_{99}	Chi					
	Upper	Upper	Upper	Upper	df	Regression	Relative	toxicity (RT)		
	Lower limits	Lower limits	Lower limits	Lower limits	sig	R^2	LT_{50}	LT_{90}	LT_{95}	LT_{99}
Phyllanthus emblica	2.549	13.635	16.777	22.673	0.992	y = 0.27 + 0.11 * x	3.6	2.0	1.9	1.8
	-3.964	9.998	12.130	15.954	9	0.920				
	5.163	26.619	34.527	49.537	0.986^{a}					
Plantago psyllium	3.333	13.974	16.991	22.650	0.477	y = 0.39 + 0.12 * x	2.8	1.9	1.9	1.8
	-1.757	10.375	12.438	16.163	9	0.963				
	5.797	25.930	33.012	46.445	0.998^{a}					
Portulaca oleracea	6.976	17.848	20.930	26.711	0.616	y = 0.83 + 0.12 * x	1.3	1.5	1.5	1.5
	4.167	13.376	15.458	19.285	9	0.957				
	10.094	32.239	39.046	51.892	0.996^{a}					
Punica granatum	5.617	16.801	19.972	25.920	0.820	y=0.67+0.12*x	1.7	1.6	1.6	1.6
	2.097	12.443	14.563	18.444	9	0.94				
	8.418	31.818	39.266	53.331	0.992^{a}					
Ruta graveolens	4.869	13.846	16.391	21.165	1.420	y = 0.71 + 0.14 * x	1.9	1.9	1.9	2.0
	1.960	10.701	12.519	15.826	9	0.925				
	7.020	22.226	27.197	36.625	0.965^{a}					
Solenostemma argel	6.188	14.899	17.369	22.002	1.486	y=0.9+0.14*x	1.5	1.8	1.8	1.9
	3.847	11.677	13.460	16.721	9	0.927				
	8.439	22.971	27.527	36.157	0.960^{a}					
Terminalia chebula	5.315	19.501	23.523	31.066	0.752	y = 0.48 + 0.09 * x	1.7	1.4	1.4	1.3
	-0.510	13.610	16.100	20.663	9	0.903				
	8.873	50.370	63.647	88.659	0.993 ^a					
Viola odorata	5.176	10.941	12.575	15.641	066.0	y = 1.12 + 0.21 * x	1.8	2.5	2.5	2.6
	3.521	8.921	10.178	12.465	9	0.971				
	6.723	15.078	17.720	22.747	0.986^{a}					
Viscum album	9.288	26.936	31.939	41.323	0.668	y = 0.68 + 0.07 * x	1.0	1.0	1.0	1.0
	5.130	17.317	20.118	25.304	9	0.897				
	25.327	135.850	167.835	227.903	0.995 ^a					
Ziziphus spina- christi	5.271	15.797	18.781	24.379	1.894	y=0.66+0.12*x	1.8	1.7	1.7	1.7
	1.840	11.882	13.924	17.651	9	0.886				
	7.810	28.100	34.658	47.061	0.929^{a}					
A herbal blend	4.053	15.973	19.352	25.691	1.145	y = 0.43 + 0.1 * x	2.3	1.7	1.7	1.6
	-1.309	11.649	13.882	17.941	9	0.903				
	6.779	32.384	41.082	57.530	0.980^{a}					

LT lethal time values, Chi-square; df degree of freedom, Sig significance, R^2 R squared

^a Since the significance level is less than .050, a heterogeneity factor is used in the calculation of confidence limits

Viscum album is the reference material (the least effective plant)

plants. *Commiphora molmol* extracts contain sesquiterpenes, fatty acid esters, and phenols, while *Araucaria heterophylla* extracts possess monoterpenes, sesquiterpenes, terpene alcohols, fatty acids, and phenols. Both plant extracts had a clear effect on killing many insect pests [57].

The toxicity of secondary metabolites (phenolic compounds) plays an essential role in plant–herbivore and pathogen interaction. Phenolic compounds exhibit antioxidant properties, which are the main reason for the pesticide effect in nature [37]. A previous study evaluated phenolic compounds such as rutin, vanillic, and synaptic acid in pepper (*Capsicum annum*) and reported strong effects on larval development and response of the adult moth (Oriental leafworm, *Spodoptera litura*) [58]. The phenolic crude extract of *Artocapus lakoocha* leaves (1600 µg/ml) was effective (72%) in getting rid of cattle ticks, *R.* (*Boophilus*) microplus using AIT and its LC50 of the extract was 1050 µg/ml [59].

Tannins possess astringent properties and cause insect tissue to pull together, which restricts blood flow and results in insect death. Tannins also turn insect skin into leather by binding proteins to form water-insoluble substances resistant to proteolytic enzymes. The activity and toxicity of extracts depend on the concentration and exposure time, but every extract contains different concentrations and different active principles (which are likely the reason for biological activity). Moreover, the combination of active constituents in the extract could have a synergistic effect and increase the biological activity of the extract. The anthelmintic activity of some medicinal plants may be attributed to their content of secondary metabolites, tannins, flavonoids, alkaloids, coumarins, triterpenoids, and essential oils. The results of previous studies confirm the use of medicinal plants in combating intestinal parasites [21].

The M group plants in this study (80–90 MO%) included Acacia nilotica, Apium graveolens, Capsicum annuum, Ceratonia siliqua, Cucurbita pepo (seeds), Equisetum arvense, Eruca sativa, Ginkgo biloba, Plantago psyllium, Phyllanthus emblica, Punica granatum, and Ziziphus spina-christi). Similarly, the hydrodistilled seed oil of Acacia nilotica results in a strong larvicidal activity against Anopheles stephensi (LC₅₀ = 5.239, LC90 = 9.713 mg/L), Aedes aegypti, (LC50 = 3.174, LC90 = 11.739 mg/L), and Culex quinquefasciatus (LC₅₀=4.112, LC90 = 12.325 mg/L) [60]. In addition, toxic and oviposition deterrence effects that were observed against Alcaria vulgaris and Apium graveolens L were also reported against the potato tuber moth, Phthorimaea operculella [61].

Like our observations, some M group plants were also found to be effectively toxic to other pests such as *Acacia nilotica* and *Punica granatum* against *Rhipicephalus* (Boophilus) annulatus [62]; Phyllanthus emblica against the adult cattle tick Haemaphysalis bispinosa and Culex tritaeniorhynchus [63]; Apium graveolens against Lucilia sericata [64]; and Eruca sativa against Culex pipiens [65]. In addition, Lupinus pilosus and Punica granatum repelled the carmine spider mite, Tetranychus cinnabarinus, and affected its eggs [66]. In contrast, Equisetum arvense ethanolic extract had no acaricidal effect against Tetranychus merganser [63].

Overall, The L group plants in this study were less effective against *H. dromedarii*. A similar effect was reported for *Portulaca oleracea* against *Dermanyssus* gallinae [67] and *Ruta graveolens* against the red palm mite, *Raoiella indica* [67], but it had an acaricidal effect against *R. microplus* [68, 69]. In contrast, some of the L group plants effectively controlled other pests such as *Allium cepa* against *Boophilus annulatus* [70], *Ferula pseudalliacea* against *Varroa destructor* (Acari: Varroidae) [71], Allium cepa and Lupinus luteus against *Cephalopina titillator* [28], and *Solenostemma argel* against *Culex pipiens L.* [72].

Some plants that were not applied in this survey showed pesticidal effects in some other studies such as the commercial oils of rosemary, neem, cyperus, and garlic against *H. dromedarii* [73]; *Saussurea costus* extracts against blood-sucking arthropods of camel and cattle such as *H. dromedarii*, *Rhipicephalus* (*Boophilus*) annulatus, the louse fly, *Hippobosca maculata*, and the cattle lice, *Haematopinus eurysternus*.

More botanicals were effective like Artemisia absinthium against Ixodes ricinus [74]; Azadirachta indica against Sarcoptes scabiei var. cuniculi [23]; Aloe vera L. against the carmine spider mite Tetranychus cinnabarinus (Boisduval) [24]; components of botanical acaricides against Psoroptes spp. [75]; and Vernonia amygdalina, Calpurnia aurea, Schinus molle, Ricinus communis, Croton macrostachyus; and Nicotiana tabacum against R. (Boophilus) decoloratus and Rhipicephalus pulchellus [76]. In another study, the extent of the danger of the newovel photosensitizers against male H. dromedarii ticks was evaluated. Methylene blue, safranin, and field stain dye showed a wide absorption area, indicating greater photosynthetic activity and better phototoxicity, and could be used as replacement agents for synthetic insecticides [14]. Various findings in pest control may be attributed to the species and location of the plants, pests, and extraction methods [77, 78]. In another study, the extent of the danger of the novel photosensitizers against male H. dromedarii ticks was evaluated. Methylene blue, safranin, and field stain dye showed a wide absorption area, indicating greater photosynthetic activity and better phototoxicity, and could be used as replacement agents for synthetic insecticides [14].

Table 4Total content of activecompounds in aqueous extractsof the investigated plants

Plant name	Total Phenols (mg gallic/g D.W.)	Total Flavonoids (mg Querstine /gD.W)	Tannins (mg gallic /g D.W.)	Anthocyanins (mg/100 g)
Carum carvi	13.66 ± 0.201	10.58 ± 0.218	41.50 ± 0.464	_
Ocimum basilicum	42.43 ± 0.269	9.76 ± 0.140	0.93 ± 0.040	_
Viola odorata	314.01 ± 1.73	167.57 ± 1.40	_	15.37 ± 0.16
Cucurbita pepo peel	114.99 ± 0.345	29.99 ± 0.235	_	_
Mespilus germanica	135.53 ± 0.40	42.63 ± 0.38	4.24 ± 0.25	_
Peganum harmala	36.74 ± 0.252	7.30 ± 0.245	2.95 ± 0.01	_

Data are means ± standard deviation of triplicate experiments

Conclusions

Alternative and affordable tick control strategies are needed to prevent tick bites and tick-borne diseases. This study screened the toxicity of 35 plants (17%), and *Carum carvi*, *Cucurbita pepo*, *Mespilus germanica*, *Ocimum basilicum*, *Peganum harmala*, and *Viola alpine* showed highly effective results. Even though the applied plants were novel against *H. dromedarii*, few of these plants induced pesticide effects against other pests. Using such plant extracts by farmers as natural alternative acaricides, especially when facing acaricidal resistance or due to limited options for tick control is recommended. These extracts also would reduce reliance on

Fig. 1 Pearson's Correlation Matrix of Tick Mortality Rate and Plant Phytochemicals concentrations. Positive correlations are displayed in purple and negative correlations are displayed in orange. The color intensity and the size of the circle are proportional to the Pearson's correlation coefficient

conventional acaricides and their health and environmental drawbacks. it is recommened to develop effective formulations for tick elimination in the form of shampoos or tick sprays to be applied to cattle as well as other animals. Future studies should be directed toward improving their toxicity through nanoformulations and assessing their field applications and eco-toxicological profiles.

Acknowledgements The authors would like to thank the funding agencies, LEAP-Agri (A Long-term EU–Africa Research and Innovation Partnership on Food and Innovation on Food and Nutrition Security and Sustainable Agriculture), project No: 220-MeTVAC, as well as Science, Technology & Innovation Funding Authority (STIFA), Egypt, Project ID: 13520-220. Project title: "Ecosmart Alternative Control Strategies against *Theileria annulata* and its Tick Vectors".

Author Contributions All authors conceived, planned, and designed the research. HK, SG, and MB conducted experiments. AS and IR helped with data collection. HK and AM analyzed data. HK and EB writing the original draft preparation. HT extracted and determined the chemical profile. AM and SK are help in writing, reviewing, and editing the manuscript. All authors read and approved the manuscript.

Funding Financial support for this study was provided by LEAP-Agri (A Long-term EU–Africa Research and Innovation Partnership on Food and Innovation on Food and Nutrition Security and Sustainable Agriculture), project No: 220-MeTVAC, as well as Science, Technology & Innovation Funding Authority (STIFA), Egypt, Project ID: 13520-220. Project title: "Ecosmart Alternative Control Strategies against *Theileria annulata* and its Tick Vectors".

Data availability Available upon request.

Declarations

Conflict of interest The authors declare that there were no conflicts of interest.

Ethical approval The protocol of this work was approved by the Ethical Committee related to the Faculty of Veterinary Medicine at Benha University, Egypt (BUFVTM 02-10-22).

References

1. Ali S, Ijaz M, Ghaffar A, Oneeb M, Masud A, Durrani AZ et al (2020) Species distribution and seasonal dynamics of equine tick

infestation in two subtropical climate niches in Punjab, Pakistan. Pak Vet J 40(1):25–30. https://doi.org/10.29261/pakvetj/2019.095

- Ceylan O, Uslu A, Ceylan C, Sevinc F (2021) Predominancy of *Rhipicephalus turanicus* in tick-infested sheep from Turkey: a large-scale survey. Pak Vet J 41(429):433. https://doi.org/10. 29261/pakvetj/2021.036
- Ceylan O, Uslu A, Ozturk O, Sevinc F (2021) Serological investigation of some vector-borne parasitic and rickettsial agents in dogs in the western part of Turkey. Pak Vet J 41:386–392
- Farooq R, Hafeez MA, Oneeb M, Rafique A, Ashraf K, Aslam F et al (2020) Molecular characterization and phylogenetic analysis of *Babesia* species isolated from domestic cattle. Pak Vet J. https://doi.org/10.29261/pakvetj/2020.003
- Hegab A, Fahmy M, Omar H, Abuowarda M, Gattas S (2020) Investigation of tick-borne pathogens within naturally infected brown dog tick (Ixodidae: *Rhipicephalus sanguineus*) in Egypt by light and electron microscopy. Int J Vet Sci. https://doi.org/10. 37422/IJVS/20.064
- Selim A, Abdelhady A, Alahadeb J (2020) Prevalence and first molecular characterization of *Ehrlichia canis* in Egyptian dogs. Pak Vet J. https://doi.org/10.29261/pakvetj/2020.061
- Selim A, Khater H (2020) Seroprevalence and risk factors associated with Equine piroplasmosis in North Egypt. Comp Immunol Microbiol Infect Dis 73:101549. https://doi.org/10.1016/j.cimid. 2020.101549.32950955
- 8. Peter S (2020) Zoonotic *Anap*lasma and *Ehrlichia infections* and their potential reservoirs: a review. Int J Vet Sci 91–99
- Perveen N, Muzaffar SB, Vijayan R, Al-Deeb MA (2020) Microbial communities associated with the camel tick, *Hyalomma dromedarii*: 16S rRNA gene-based analysis. Sci Rep. https://doi. org/10.1038/s41598-020-74116-7
- Al-Deeb MA, Muzaffar SB, Abu-Zeid YA, Enan MR, Karim S (2015) First record of a spotted fever group Rickettsia sp. and *Theileria annulata in Hyalomma dromedarii* (Acari: Ixodidae) ticks in the United Arab Emirates. Fla Entomol 98(1):135–139. https://doi.org/10.1653/024.098.0123
- Abbas RZ, Zaman MA, Colwell DD, Gilleard J, Iqbal Z (2014) Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet Parasitol 203(1–2):6–20. https://doi. org/10.1016/j.vetpar.2014.03.006
- Anwar MI, Sadiq N, Aljedani DM, Iqbal N, Saeed S, Khan HAA, Khan KA (2022) Toxicity of different insecticides against the dwarf honey bee, *Apis florea Fabricius* (Hymenoptera: Apidae). J King Saud Univ Sci 34(1):101712. https://doi.org/10.1016/j. jksus.2021.101712
- Mani AMM, Araji RRA (2022) Determination of pyrothyroid (Deltamethrin) pesticides and ivermectine residues in local sheep milk and mutton by high performance liquid chromatography (HPLC). J Vet Med Anim Sci 5(1):1106
- Mohammed SH, Baz MM, Ibrahim M, Radwan IT, Selim A, Dawood AFD et al (2023) Correction: acaricide resistance and novel photosensitizing approach as alternative acaricides against the camel tick, Hyalomma dromedarii. Photochem Photobiol Sci 22(3):693. https://doi.org/10.1007/s43630-022-00329-6
- Nabil M, Khater HF, Selim A, Baz MM, Govindarajan M, Taie HA, Negm S (2023) Acaricidal efficacy of silver nanoformulations of Commiphora molmol and Zingiber officinale against the camel tick, Hyalomma dromedarii (Ixodida: Ixodidae). Inorg Chem Commun 147:110229. https://doi.org/10.1016/j.inoche. 2022.110229
- Khater HF, Ziam H, Abbas A, Abbas RZ, Raza MA, Hussain K et al (2020) Avian coccidiosis: recent advances in alternative control strategies and vaccine development. Agrobiol Rec. https:// doi.org/10.47278/journal.abr/2020.004

- 17. Khater HF, Ramadan MY (2007) The acaricidal effect of peracetic acid against *Boophilus annulatus* and Argas persicus. Acta Sci Vet 35(1):29–40. https://doi.org/10.22456/1679-9216.15806
- Khater HF, Seddiek SA, El-Shorbagy MM, Ali AM (2013) Erratum to: the acaricidal efficacy of peracetic acid and deltamethrin against the fowl tick, *Argas persicus*, infesting laying hens. Parasitol Res 112(10):3669–3678. https://doi.org/10.1007/ s00436-013-3563-4
- Khater H, Hendawy N, Govindarajan M, Murugan K, Benelli G (2016) Photosensitizers in the fight against ticks: safranin as a novel photodynamic fluorescent acaricide to control the camel tick *Hyalomma dromedarii* (Ixodidae). Parasitol Res 115(10):3747– 3758. https://doi.org/10.1007/s00436-016-5136-9
- Abbas RZ, Zaman MA, Sindhu D, Sharif M, Rafique A, Saeed Z (2020) Anthelmintic effects and toxicity analysis of herbal Dewormer against the infection of *Haemonchus contortus* and *Fasciola hepatica* in goat. Pak Vet J 40(4):455–460. https://doi. org/10.29261/pakvetj/2020.083
- Degla LH, Kuiseu J, Olounlade PA, Attindehou S, Hounzangbe-Adote MS, Edorh PA, Lagnika L (2022) Use of medicinal plants as alternative for the control of intestinal parasitosis: Assessment and perspectives. Agrobiol Rec 7:1–9. https://doi.org/10.47278/ journal.abr/2021.011
- Seddiek SA, Ali MM, Khater HF, El-Shorbagy MM (2011) Anthelmintic activity of the white wormwood, *Artemisia herbaalba* against *Heterakis gallinarum* infecting turkey poults. J Med Plants Res 5(16):3946–3957. https://doi.org/10.5897/JMPR.90000 85
- Seddiek SA, Khater HF, El-Shorbagy MM, Ali AM (2013) The acaricidal efficacy of aqueous neem extract and ivermectin against *Sarcoptes scabiei var. cuniculi* in experimentally infested rabbits. Parasitol Res 112(6):2319–2330. https://doi.org/10.1007/ s00436-013-3395-2
- Seddiek ShA, El-Shorbagy MM, Khater HF, Ali AM (2014) The antitrichomonal efficacy of garlic and metronidazole against *Trichomonas gallinae* infecting domestic pigeons. Parasitol Res 113(4):1319–1329. https://doi.org/10.1007/s00436-014-3771-6
- 25. Ahmed N, Alam M, Saeed M, Ullah H, Iqbal T, Al-Mutair KA et al (2021) Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. In: Dr. Hamadttu El-Shafie, Global Decline of Insects. IntechOpen, https://doi.org/10.5772/intechopen.100416. https://www.intec hopen.com/chapters/79121
- 26. Iqbal T, Ahmed N, Shahjeer K, Ahmed S, Al-Mutairi KA, Khater HF, et al (2021) Botanical insecticides and their potential as antiinsect/pests: are they successful against insects and pests? In: Dr. Hamadttu El-Shafie, Global Decline of Insects. IntechOpen. https://doi.org/10.5772/intechopen.100418. https://www.intec hopen.com/online-first/78945
- Khater HF, Geden CJ (2018) Potential of essential oils to prevent fly strike and their effects on the longevity of adult *Lucilia sericata*. J Vector Ecol 43(2):261–270. https://doi.org/10.1111/jvec. 12310
- Khater HF (2014) Bioactivities of some essential oils against the camel nasal botfly, *Cephalopina titillator*. Parasitol Res 113(2):593–605. https://doi.org/10.1007/s00436-013-3688-5
- 29. Khater HF, Geden CJ (2019) Efficacy and repellency of some essential oils and their blends against larval and adult house flies, *Musca domestica* L. (Diptera: Muscidae). J Vector Ecol 44(2):256–263. https://doi.org/10.1111/jvec.12357
- 30. Khater HF, Hanafy A, Abdel-Mageed AD, Ramadan MY, El-Madawy RS (2011) Control of the myiasis- producing fly, *Lucilia sericata*, with Egyptian essential oils. Int J Dermatol 50(2):187–194. https://doi.org/10.1111/j.1365-4632.2010.04656.x
- 31. Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M et al (2016) In vivo and in vitro effectiveness of

Azadirachta indica-synthesized silver nanocrystals against *Plasmodium berghei* and *Plasmodium falciparum*, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22. https://doi. org/10.1016/j.rvsc.2016.03.001

- Alkenani NA, Ahmed MMM, Al-Solami HM, Anwar Y, Alghamdi KM, Ahmad MS (2021) Molecular identification and bio-control of mosquitoes using black seeds extract in Jeddah. Pak Vet J. https://doi.org/10.29261/pakvetj/2021.025
- Baz MM, Hegazy MM, Khater HF, El-Sayed YA (2021) Comparative evaluation of five oil-resin plant extracts against the mosquito larvae, *Culex pipiens* say (diptera: culicidae). Pak Vet J. https:// doi.org/10.29261/pakvetj/2021.010
- Baz MM, Selim AM, Radwan IT, Khater HF (2022) Plant oils in the fight against the West Nile Vector, *Culex pipiens*. Int J Trop Insect Sci. https://doi.org/10.1007/s42690-022-00762-1
- 35. Radwan IT, Eltaly RI, Baz MM, Yousif M, Selim A, Taie HA, Manaa AA, Khater HK (2023) Novel acaricidal and growth-regulating activity of Aloe vera and Rheum rhabarbarum extracts and their oil/water nanoemulsions against the camel tick, *Hyalomma dromedarii*. Sci Rep 13:16802. https://doi.org/10.1038/ s41598-023-43776-6
- 36. Khater HF, Ali AM, Abouelella GA, Marawan MA, Govindarajan M, Murugan K et al (2018) Toxicity and growth inhibition potential of vetiver, cinnamon, and lavender essential oils and their blends against larvae of the sheep blowfly, *Lucilia sericata*. Int J Dermatol 57(4):449–457. https://doi.org/10.1111/ijd.13828
- Ogbonna O, Ogbonna P, Dike M (2016) Phytochemical screening, quantitative estimates of bioactive compounds in *Spondias mombin* and *Azadirachta indica*. Res J Chem Sci ISSN 2016X. 2231606
- Abd Elgawad S, Baz M, Taie H, Mustafa S, Khater H (2023) Novel acaricidal efficacy of nine Egyptian plants against the camel tick, *Hyalomma dromedarii* (Ixodida: Ixodidae). Persian J Acarol 12:121–136. https://doi.org/10.22073/pja.v12i1.76977
- Apanaskevich DA, Schuster AL, Horak IG (2008) The genus Hyalomma: VII. Redescription of all parasitic stages of *H.(Euhyalomma) dromedarii* and *H.(E.) schulzei* (Acari: Ixodidae). J Med Entomol 45(5):817–831. https://doi.org/10.1093/jmedent/45.5.817
- Makkar HPS, Becker K, Abel H, Pawelzik E (1997) Nutrient contents, rumen protein degradability and antinutritional factors in some colour- and white-flowering cultivars of *Vicia faba beans*. J Sci Food Agric 75(4):511–520. https://doi.org/10.1002/(SICI) 1097-0010(199712)75:4%3c511::AID-JSFA907%3e3.0.CO;2-M
- Ordonez A, Gomez J, Vattuone M, Lsla M (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97(3):452–458. https://doi.org/10.1016/j.foodchem.2005.05.024
- 42. Francis J (1982) Analysis of anthocyanins. In: Markakis P (ed) Anthocyanins as good colors. Academic Press, London, pp 181–208
- Maxson ED, Rooney LW (1972) Two methods of tannin analysis for Sorghum bicolor (L.) Moenchgrain 1. Crop Sci 12(2):253–254. https://doi.org/10.2135/cropsci1972.0011183X001200020035x
- Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267. https://doi.org/10. 1093/jee/18.2.265a
- 45. Khater HF (2012) EcosmartBiorational insecticides: alternative insect control strategies. In: Farzana P (ed.) Insecticides -Advances in Integrated Pest Management. InTech, Rijeka, Croatia. 17–60. 43. https://doi.org/10.5772/27852. Available from http:// www.intechopen.com/books/insecticides-advances-in-integratedpest-management/ecosmart-biorational-insecticides-alternativeinsect-control-strategies
- Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacologia 3(12):641–656. https://doi.org/ 10.5567/pharmacologia.2012.641.656

- 47. Salman M, Abbas RZ, Israr M, Abbas A, Mehmood K, Khan MK et al (2020) Repellent and acaricidal activity of essential oils and their components against *Rhipicephalus* ticks in cattle. Vet Parasitol 283:109178. https://doi.org/10.1016/j.vetpar.2020.109178
- Fang R, Jiang CH, Wang XY, Zhang HM, Liu ZL, Zhou L et al (2010) Insecticidal activity of essential oil of *Carum carvi* fruits from China and its main components against two grain storage insects. Molecules 15(12):9391–9402. https://doi.org/10.3390/ molecules15129391
- Hatami Bavarsad S, Zandi Sohani N, Rajab Poor A (2020) Fumigant toxicity and repellency of some essential oils against *Callosobruchus maculatus* (Col: Bruchidae). IJMAPR 36(3):404–416. https://doi.org/10.22092/ijmapr.2020.128639.2674
- El-Zemity S, Rezk H, Farok S, Zaitoon A (2010) Acaricidal activity of some essential oils and their monoterpenoidal constituents against the house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). Trends Acarol. https://doi.org/10.1631/ jzus.2006.B0957
- 51. dos Santos FCC, Vogel FSF, Monteiro SG (2012) Essential basil oil effect (*Ocimum basilicum* L.) on cattle tick Rhipicephalus (Boophilus) microplus in in vitro experiments. Semin Cienc Agrar 33(3):1133–1140. https://doi.org/10.5433/1679-0359. 2012v33n3p1133
- 52. Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez-Gutierrez R, Lugo-Cervantes Edel C (2011) Acaricidal effect and chemical composition of essential oils extracted from *Cuminum cyminum*, Pimenta dioica and *Ocimum basilicum* against the cattle tick *Rhipicephalus (Boophilus) microplus* (Acari: Ixo-didae). Parasitol Res 108(2):481–487. https://doi.org/10.1007/s00436-010-2069-6
- 53. Eltaly RI, Baz MM, Radwan IT, Yousif M, Abosalem HS, Selim A, Taie HAA, Farag AAG, Khater HF (2023) Novel acaricidal activity of *Vitex castus* and *Zingiber officinale* extracts against the camel tick, *Hyalomma dromedarii*. Int J Vet Sci 12(2):255–259. https://doi.org/10.47278/journal.ijvs/2022.184
- 54. Refaat M, Momen FM, Amer SAA (2002) Acaricidal activity of sweet basil and French lavender essential oils against two species of mites of the family Tetranychidae (Acari: Tetranychidae). Acta Phytopathol Entomol Hung 37(1–3):287–298. https:// doi.org/10.1556/APhyt.37.2002.1-3.28
- 55. Jbilou R, Sayah F (2007) Effects of Peganum harmala (Zygophyllaceae) seed extracts on the development of *Tribolium castaneum* (Coleoptera: Tenebrionidae). Int J Trop Insect Sci 27(3–4):199–209. https://doi.org/10.1017/S1742758407850971
- Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against *Aedes, Anopheles,* and *Culex larvae* (Diptera, Culicidae). Parasitol Res 99(4):466–472. https://doi.org/10. 1007/s00436-006-0182-3
- 57. Baz MM, Khater HF, Baeshen RS, Selim A, Shaheen ES, El-Sayed YA, Hegazy MM (2022) Novel pesticidal efficacy of *Araucaria heterophylla* and *Commiphora molmol* extracts against camel and cattle blood-sucking ectoparasites. Plants 11(13):1682
- Movva V, Pathipati UR (2017) Feeding- induced phenol production in Capsicum annuum L. influences *Spodoptera litura* F. larval growth and physiology. Arch Insect Biochem Physiol 95(1):e21387. https://doi.org/10.1002/arch.21387
- 59. Srisanyong W, Bunyaluk D, Srinontong P, Chitsanoor S (2021) Acaricidal activity of phenolic crude extract from Artocapus lakoocha leaves against cattle tick Rhipicephalus (Boophilus) microplus. Int J Vet Sci 10:307–311. https://doi.org/10.47278/ journal.ijvs/2021.063
- Vivekanandhan P, Venkatesan R, Ramkumar G, Karthi S, Senthil-Nathan S, Shivakumar MS (2018) Comparative analysis of major mosquito vectors response to seed-derived essential oil

and seed pod-derived extract from *Acacia nilotica*. Int J Environ Res Public Health 15(2):388. https://doi.org/10.3390/ijerph1502 0388

- 61. Hatami A, Mohammadi D, Evazian N (2020) Lethal effects and oviposition deterrency of celery, *Apium graveolens*, and sickleweed, *Falcaria vulgaris*, against the potato tuber moth, *Phthorimaea operculella* in laboratory conditions. J Appl Res Plant Prot 8(4): 1–13. https://www.sid.ir/en/journal/ViewPaper. aspx?id=797061
- 62. Guneidy RA, Amer MA, El Hakim AE, Abdel-Shafy S, Allam SA (2021) Effect of polyphenols extracted from *Punica granatum* and *Acacia saligna* plants on glutathione S-transferase of the cattle tick *Rhipicephalus (Boophilus) annulatus* (Acari: Ixodidae). J Parasit Dis. https://doi.org/10.1007/s12639-020-01323-4
- Bagavan A, Kamaraj C, Elango G, Abduz Zahir A, Abdul Rahuman A (2009) Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 166(3–4):286–292. https://doi.org/10.1016/j.vetpar. 2009.09.007
- Khater HF, Khater DF (2009) The insecticidal activity of four medicinal plants against the blowfly *Lucilia sericata* (Diptera: Calliphoridae). Int J Dermatol 48(5):492–497. https://doi.org/ 10.1111/j.1365-4632.2009.03937.x
- 65. Khater HF, Shalaby AA (2008) Potential of biologically active plant oils to control mosquito larvae (*Culex pipiens*, Diptera: Culicidae) from an Egyptian locality. Rev Inst Med Trop Sao Paulo 50(2):107–112. https://doi.org/10.1590/s0036-46652 008000200008
- 66. Mansour F, Azaizeh H, Saad B, Tadmor Y, Abo-Moch F, Said O (2004) The potential of middle eastern flora as a source of new safe bio-acaricides to *control Tetranychus cinnabarinus*, the carmine spider mite. Phytoparasitica 32(1):66–72. https://doi.org/10.1007/BF02980862
- Rajabpour A, Mashhadi ARA, Ghorbani MR (2018) Acaricidal and repellent properties of some plant extracts against poultry red mite, *Dermanyssus gallinae* (Mesostigmata: Dermanyssidae). Persian J Acarol. https://doi.org/10.22073/pja.v1i1.34098
- de Monteiro CM, Maturano R, Daemon E, Catunda-Junior FEA, Calmon F, Senra Tde S et al (2012) Acaricidal activity of eugenol on *Rhipicephalus microplus* (Acari: Ixodidae) and *Dermacentor nitens* (Acari: Ixodidae) larvae. Parasitol Res 111(3):1295–1300. https://doi.org/10.1007/s00436-012-2964-0
- 69. de Carvalho AV, Lübeck I, da Rocha MB, Güez CM, Machado MM, de Oliveira LFS (2015) Evaluation of the tickcide, genotoxic, and mutagenic effects of the *Ruta graveolens* L. (Rutaceae). Acta Sci Biol Sci 37(4):491–497. https://doi.org/10.4025/ ACTASCIBIOLSCI.V37I4.27576
- 70. Ramezanipour O, Yakhchali M (2020) Study on the effect of *Ferula pseudalliacea* (Family: Apiaceae) extract on Varroa

destructor (Acari: Varroidae) infestation in honeybee (Hymenoptera: Apidae, Apis melifera). Iran J Vet Res 15(4):85–92. https://doi.org/10.22055/ivj.2019.126094.2031

- Al- Doghairi M, El-Nadi A, Elhag E, Al-Ayedh H (2004) Effect of *Solenostemma argel* on oviposition, egg hatchability and viability of Culex pipiens L. larvae. Phytother Res 18(4):335–338. https://doi.org/10.1002/ptr.1432
- Abdel-Ghany H, Allam SA, Khater H, Selim A, Abdel-Shafy S (2023) Effects of commercial oils on the camel tick *Hyalomma dromedarii* (Acari: Ixodidae) and their enzyme activities. Persian J Acarol 12:137–149. https://doi.org/10.22073/pja.v12i1. 76404
- Jaenson TG, Pålsson K, Borg-Karlson AK (2005) Evaluation of extracts and oils of tick-repellent plants from Sweden. Med Vet Entomol 19(4):345–352. https://doi.org/10.1111/j.1365-2915. 2005.00578.x
- 74. Zhang Q, Ding L, Li M, Cui W, Ding W, Luo J, Zhang Y (2013) Action modes of *Aloe vera* L. extracts against Tetranychus cinnabarinus Boisduval (Acarina: Tetranychidae). Agric Sci 04(3):117–122. https://doi.org/10.4236/as.2013.43018
- Fang F, Li M, Jiang Z, Lu X, Guillot J, Si H (2020) Comparing acaricidal and ovicidal activity of five terpenes from essential oils against *Psoroptes cuniculi*. Parasitol Res 119(12):4219– 4223. https://doi.org/10.1007/s00436-020-06823-z
- Kemal J, Zerihun T, Alemu S, Sali K, Nasir M, Abraha A, Feyera T (2020) In vitro acaricidal activity of selected medicinal plants traditionally used against ticks in Eastern Ethiopia. J Parasitol Res 2020:7834026. https://doi.org/10.1155/2020/7834026
- 77. Baz MM, Eltaly RI, Debboun M, Selim A, Radwan IT, Ahmed N, Khater HF (2023) The contact/fumigant adulticidal effect of Egyptian oils against the house fly, Musca domestica (Diptera: Muscidae). Int J Vet Sci 12(2):192–198. https://doi.org/10. 47278/journal.ijvs/2022.180
- Taha LS, Taie HA, Hussein MM (2015) Antioxidant properties, secondary metabolites and growth as affected by application of putrescine and moringa leaves extract on jojoba plants. J App Pharm Sci 5(1):030–036

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.